2 research outputs found

    Position Estimation in Mixed Indoor-Outdoor Environment Using Signals of Opportunity and Deep Learning Approach

    Get PDF
    To improve the user's localization estimation in indoor and outdoor environment a novel radiolocalization system using deep learning dedicated to work both in indoor and outdoor environment is proposed. It is based on the radio signatures using radio signals of opportunity from LTE an WiFi networks. The measurements of channel state estimators from LTE network and from WiFi network are taken by using the developed application. The user's position is calculated with a trained neural network system's models. Additionally the influence of various number of measurements from LTE and WiFi networks in the input vector on the positioning accuracy was examined. From the results it can be seen that using hybrid deep learning algorithm with a radio signatures method can result in localization error 24.3 m and 1.9 m lower comparing respectively to the GPS system and standalone deep learning algorithm with a radio signatures method in indoor environment. What is more, the combination of LTE and WiFi signals measurement in an input vector results in better indoor and outdoor as well as floor classification accuracy and less positioning error comparing to the input vector consisting measurements from only LTE network or from only WiFi network

    AEGIS – Mobile Device for Generating Electromagnetic Curtain for Special Applications and Countering the Threats of RCIED

    Get PDF
    In the article the concept, design and realization of the technological demonstrator of a mobile device for generating an electromagnetic curtain (with a name AEGIS) were presented, both in the hardware and software areas. The device is designed to block the radio communication which allow detonating the Radio Controlled Improvised Explosive Devices (RCIEDs). The preliminary laboratory tests of the demonstrator for generating the jamming signal, that were presented in the paper, aimed at assessing the correctness of the device operation and verification of generated signal parameters. On the basis of the obtained results, the ability to jam the cellular systems as well as other radio devices operating in the frequency band from 400 MHz to 2700 MHz was assessed
    corecore